Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727377

RESUMO

This paper explores methods to enhance the reproducibility of Josephson junctions, which are crucial elements in superconducting quantum technologies, when employing the Dolan technique in 30 kV e-beam processes. The study explores the influence of dose distribution along the bridge area on reproducibility, addressing challenges related to fabrication sensitivity. Experimental methods include e-beam lithography, with electron trajectory simulations shedding light on the behavior of backscattered electrons. Wedescribe the fabrication of various Josephson junction geometries and analyze the correlation between the success rates of different lithography patterns and the simulated distribution of backscattered electrons. Our findings demonstrate a success rate of up to 96.3% for the double-resist 1-step low-energy e-beam lithography process. As a means of implementation strategy, we provide a geometric example that takes advantage of simulated stability regions to administer a controlled, uniform dose across the junction area, introducing novel features to overcome the difficulties associated with fabricating bridge-like structures.

2.
Phys Rev Lett ; 127(18): 180603, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767410

RESUMO

Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems. Their general validity arbitrarily far from equilibrium makes them invaluable in nonequilibrium physics. So far, experimental studies of quantum fluctuation relations do not account for quantum correlations and quantum coherence, two essential quantum properties. We here apply a novel dynamic Bayesian network approach to experimentally test detailed and integral fully quantum fluctuation theorems for heat exchange between two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup. We concretely verify individual integral fluctuation relations for quantum correlations and quantum coherence, as well as for the sum of all quantum contributions. We further investigate the thermodynamic cost of creating correlations and coherence.

3.
Phys Rev Lett ; 122(24): 240602, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31322364

RESUMO

We perform an experiment in which a quantum heat engine works under two reservoirs, one at a positive spin temperature and the other at an effective negative spin temperature, i.e., when the spin system presents population inversion. We show that the efficiency of this engine can be greater than that when both reservoirs are at positive temperatures. We also demonstrate the counterintuitive result that the Otto efficiency can be beaten only when the quantum engine is operating in the finite-time mode.

4.
Nat Commun ; 10(1): 2456, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31165732

RESUMO

Heat spontaneously flows from hot to cold in standard thermodynamics. However, the latter theory presupposes the absence of initial correlations between interacting systems. We here experimentally demonstrate the reversal of heat flow for two quantum correlated spins-1/2, initially prepared in local thermal states at different effective temperatures, employing a Nuclear Magnetic Resonance setup. We observe a spontaneous energy flow from the cold to the hot system. This process is enabled by a trade off between correlations and entropy that we quantify with information-theoretical quantities. These results highlight the subtle interplay of quantum mechanics, thermodynamics and information theory. They further provide a mechanism to control heat on the microscale.

5.
Phys Rev Lett ; 123(24): 240601, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922824

RESUMO

Developments in the thermodynamics of small quantum systems envisage nonclassical thermal machines. In this scenario, energy fluctuations play a relevant role in the description of irreversibility. We experimentally implement a quantum heat engine based on a spin-1/2 system and nuclear magnetic resonance techniques. Irreversibility at a microscope scale is fully characterized by the assessment of energy fluctuations associated with the work and heat flows. We also investigate the efficiency lag related to the entropy production at finite time. The implemented heat engine operates in a regime where both thermal and quantum fluctuations (associated with transitions among the instantaneous energy eigenstates) are relevant to its description. Performing a quantum Otto cycle at maximum power, the proof-of-concept quantum heat engine is able to reach an efficiency for work extraction (η≈42%) very close to its thermodynamic limit (η=44%).

6.
Phys Rev Lett ; 117(24): 240502, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-28009191

RESUMO

Maxwell's demon explores the role of information in physical processes. Employing information about microscopic degrees of freedom, this "intelligent observer" is capable of compensating entropy production (or extracting work), apparently challenging the second law of thermodynamics. In a modern standpoint, it is regarded as a feedback control mechanism and the limits of thermodynamics are recast incorporating information-to-energy conversion. We derive a trade-off relation between information-theoretic quantities empowering the design of an efficient Maxwell's demon in a quantum system. The demon is experimentally implemented as a spin-1/2 quantum memory that acquires information, and employs it to control the dynamics of another spin-1/2 system, through a natural interaction. Noise and imperfections in this protocol are investigated by the assessment of its effectiveness. This realization provides experimental evidence that the irreversibility in a nonequilibrium dynamics can be mitigated by assessing microscopic information and applying a feed-forward strategy at the quantum scale.

7.
Phys Rev Lett ; 117(16): 160402, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792393

RESUMO

The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It was recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for an indefinite time. This can occur for a class of quantum states independently of the measure used to quantify coherence, and it requires no control on the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in two different setups based on nuclear magnetic resonance at room temperature, realizing an effective quantum simulator of two- and four-qubit spin systems. Our study further reveals a novel interplay between coherence and various forms of correlations, and it highlights the natural resilience of quantum effects in complex systems.

8.
Sci Rep ; 6: 33945, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27669652

RESUMO

Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts.

9.
Phys Rev Lett ; 113(14): 140601, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25325627

RESUMO

We report the experimental reconstruction of the nonequilibrium work probability distribution in a closed quantum system, and the study of the corresponding quantum fluctuation relations. The experiment uses a liquid-state nuclear magnetic resonance platform that offers full control on the preparation and dynamics of the system. Our endeavors enable the characterization of the out-of-equilibrium dynamics of a quantum spin from a finite-time thermodynamics viewpoint.


Assuntos
Modelos Teóricos , Teoria Quântica , Clorofórmio/química , Análise de Fourier , Cinética , Espectroscopia de Ressonância Magnética , Termodinâmica
10.
Philos Trans A Math Phys Eng Sci ; 370(1976): 4613-4, 2012 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-22946030
11.
Philos Trans A Math Phys Eng Sci ; 370(1976): 4770-93, 2012 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-22946040

RESUMO

Nuclear magnetic resonance is viewed as an important technique for the implementation of many quantum information algorithms and protocols. Although the most straightforward approach is to use the two-level system composed of spin 1/2 nuclei as qubits, quadrupolar nuclei, which possess a spin greater than 1/2, are being used as an alternative. In this study, we show some unique features of quadrupolar systems for quantum information processing, with an emphasis on the ability to execute efficient quantum state tomography (QST) using only global rotations of the spin system, whose performance is shown in detail. By preparing suitable states and implementing logical operations by numerically optimized pulses together with the QST method, we follow the stepwise execution of Grover's algorithm. We also review some work in the literature concerning the relaxation of pseudo-pure states in spin 3/2 systems as well as its modelling in both the Redfield and Kraus formalisms. These data are used to discuss differences in the behaviour of the quantum correlations observed for two-qubit systems implemented by spin 1/2 and quadrupolar spin 3/2 systems, also presented in the literature. The possibilities and advantages of using nuclear quadrupole resonance experiments for quantum information processing are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...